Dual and Kernel Perceptron

Ella Kim

PRIMES CS Circle

December 2023

Ella Kim (PRIMES CS Circle)

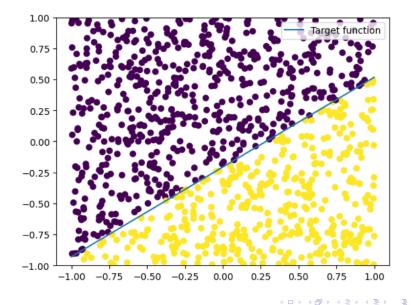
< □ > < 同 >

э

1/19

Table of Contents

Graph



Ella Kim (PRIMES CS Circle)

December 2023

Perceptron Review

- Weight vector w, initially set to all-0 vector
- Initial hypothesis: $h(x) = sign(w \cdot x)$

э

イロト イボト イヨト イヨト

Perceptron Review

- Weight vector w, initially set to all-0 vector
- Initial hypothesis: $h(x) = sign(w \cdot x)$
- Given an example $x \in \mathbb{R}^n$ and its label $c(x) = \operatorname{sign}(v \cdot x)$,
 - If h(x) = c(x) then no update is performed
 - ▶ If $h(x) \neq c(x)$ then *w* is updated by setting w_{new} to w + c(x)xExample: False positive: h(x) = 1, $c(x) = -1 \implies w_{new} = w - x$ $(w - x) \cdot x = w \cdot x - x \cdot x < w \cdot x$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation

What if the data's not linearly separable?

- We can try representing it in a higher dimension!
- But this can be computationally expensive :(

To deal with this, we can use kernel functions.

Definition

Definition

A **kernel** is a function K(x, y) such that for some mapping $\phi : \mathbb{R}^n \to \mathbb{R}^N$, $K(x, y) = \phi(x) \cdot \phi(y)$.

э

イロト イボト イヨト イヨト

Definition

Definition

A kernel is a function K(x, y) such that for some mapping $\phi : \mathbb{R}^n \to \mathbb{R}^N$, $K(x, y) = \phi(x) \cdot \phi(y)$.

Suppose $x, y \in \mathbb{R}^n$ and $\phi(x), \phi(y) \in \mathbb{R}^N$, n < N. If N is very large, just writing down $\phi(x)$ and $\phi(y)$ or computing $\phi(x) \cdot \phi(y)$ can take an enormous amount of time.

Definition

Definition

A kernel is a function K(x, y) such that for some mapping $\phi : \mathbb{R}^n \to \mathbb{R}^N$, $K(x, y) = \phi(x) \cdot \phi(y)$.

Suppose $x, y \in \mathbb{R}^n$ and $\phi(x), \phi(y) \in \mathbb{R}^N$, n < N. If N is very large, just writing down $\phi(x)$ and $\phi(y)$ or computing $\phi(x) \cdot \phi(y)$ can take an enormous amount of time.

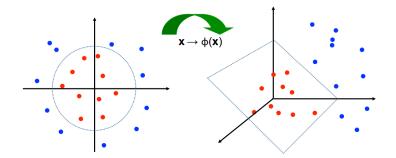
Since K(x, y) is a function of x and y (which are in n), we can potentially compute the desired value much faster by using this kernel function!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

Say the decision boundary for our data is some kind of ellipse with equation $x_1^2 + x_2^2 + \sqrt{2}x_1x_2$.

This equation isn't linear in x_1 , x_2 . To deal with this, create a mapping $\phi : \mathbb{R}^2 \to \mathbb{R}^3$, for $x = (x_1, x_2)$, $\phi(x) = \phi(x_1, x_2) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$.



Example

Say the decision boundary for our data is some kind of ellipse with equation $x_1^2 + x_2^2 + \sqrt{2}x_1x_2$.

This equation isn't linear in x_1 , x_2 . To deal with this, create a mapping $\phi : \mathbb{R}^2 \to \mathbb{R}^3$, for $x = (x_1, x_2)$, $\phi(x) = \phi(x_1, x_2) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$.

Suppose we have $a = (a_1, a_2)$ and $b = (b_1, b_2)$ and we want to compute K(a, b).

$$\begin{split} \phi(a) \cdot \phi(b) &= (a_1^2, a_2^2, \sqrt{2}a_1a_2) \cdot (b_1^2, b_2^2, \sqrt{2}b_1b_2) \\ &= a_1^2b_1^2 + a_2^2b_2^2 + 2a_1a_2b_1b_2 \\ &= (a_1b_1 + a_2b_2)^2 \\ &= (a \cdot b)^2 \\ &= K(a, b) \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dual Perceptron

- Formulates our Perceptron algorithm in a slightly different way
- Replaces hypothesis vector with a new collection of examples where the algorithm has made a mistake
- Allows for algorithm to only depend on taking inner products between examples in \mathbb{R}^n
- We can apply kernel functions!

Dual Perceptron

Suppose we are at an intermediate step in dual Perceptron.

- Algorithm has made k mistakes so far, on examples $x_{i_1}, x_{i_2}, \ldots, x_{i_k} \in \mathbb{R}^n$
- Corresponding labels $c(x_{i_1}), c(x_{i_2}), \ldots, c(x_{i_k}) \in \{-1, 1\}$

Hypothesis vector

$$w = \sum_{j=1}^k c(x_{i_j}) x_{i_j}$$

Dual Perceptron

Hypothesis vector

$$w = \sum_{j=1}^k c(x_{i_j}) x_{i_j}$$

$W \cdot X$

$$w \cdot x = \left(\sum_{j=1}^k c(x_{i_j})x_{i_j}\right) \cdot x = \sum_{j=1}^k c(x_{i_j})x_{i_j} \cdot x$$

This means that we only ever need to compute inner products between examples $x_{i_i}, x \in \mathbb{R}^n$ in order to able to compute $w \cdot x$.

э

14 / 19

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Running dual Perceptron over higher dimensional \mathbb{R}^N
- Using kernel function $\phi : \mathbb{R}^n \to \mathbb{R}^N$ for inner product computations

Suppose we are at an intermediate step in kernelized dual Perceptron.

- Algorithm has made k mistakes so far, on examples $x_{i_1}, x_{i_2}, \ldots, x_{i_k} \in \mathbb{R}^n$
- Label examples according to $c(x) = sign(v \cdot \phi(x))$ (note that v is a N-dimensional vector)

Hypothesis vector

$$w = \sum_{j=1}^k c(x_{i_j})\phi(x_{i_j})$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Hypothesis vector

$$w = \sum_{j=1}^{k} c(x_{i_j})\phi(x_{i_j})$$

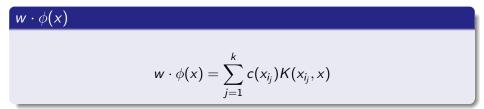
 $w \cdot \phi(x)$

$$egin{aligned} &w\cdot\phi(x)=\left(\sum_{j=1}^k c(x_{i_j})\phi(x_{i_j})
ight)\cdot\phi(x)=\sum_{j=1}^k c(x_{i_j})\phi(x_{i_j})\cdot\phi(x)\ &=\sum_{j=1}^k c(x_{i_j})\mathcal{K}(x_{i_j},x) \end{aligned}$$

Ella Kim (PRIMES CS Circle)

(日)

3



This can be computed efficiently if K can be computed efficiently! Note that we never have to explicitly write down the high-dimensional vector w while running kernelized dual Perceptron.

- 4 回 ト 4 三 ト 4 三 ト

Acknowledgements

- I would like to thank Lali and Surya for being wonderful mentors.
- I would also like to thank the MIT PRIMES program for this amazing opportunity.